Copied to
clipboard

?

G = C24.42D6order 192 = 26·3

31st non-split extension by C24 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.42D6, C6.62+ (1+4), C244S3.C2, D6⋊C449C22, C23.9D63C2, (C2×C6).39C24, C4⋊Dic37C22, C22⋊C4.88D6, (C2×Dic6)⋊4C22, C23.8D62C2, (C22×C4).188D6, Dic34D441C2, C12.48D417C2, C2.10(D46D6), (C2×C12).575C23, Dic3⋊C450C22, C23.11D63C2, Dic3.D43C2, (C4×Dic3)⋊49C22, C23.26D63C2, C22.D123C2, (C23×C6).65C22, C22.78(S3×C23), C31(C22.45C24), C22.17(C4○D12), C23.28D610C2, C23.16D625C2, (C22×S3).11C23, (C22×C6).129C23, C23.232(C22×S3), (C2×Dic3).12C23, C22.23(D42S3), (C22×C12).101C22, C6.D4.140C22, (C22×Dic3).80C22, (C4×C3⋊D4)⋊2C2, (S3×C2×C4)⋊42C22, C6.17(C2×C4○D4), (C2×C22⋊C4)⋊18S3, (C6×C22⋊C4)⋊21C2, C2.19(C2×C4○D12), (C2×C6).40(C4○D4), C2.12(C2×D42S3), (C2×C3⋊D4).8C22, (C2×C6.D4)⋊18C2, (C2×C4).262(C22×S3), (C3×C22⋊C4).110C22, SmallGroup(192,1054)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C24.42D6
C1C3C6C2×C6C22×S3S3×C2×C4C23.9D6 — C24.42D6
C3C2×C6 — C24.42D6

Subgroups: 600 in 248 conjugacy classes, 99 normal (91 characteristic)
C1, C2 [×3], C2 [×6], C3, C4 [×11], C22, C22 [×4], C22 [×14], S3, C6 [×3], C6 [×5], C2×C4 [×4], C2×C4 [×14], D4 [×5], Q8, C23 [×3], C23 [×6], Dic3 [×7], C12 [×4], D6 [×3], C2×C6, C2×C6 [×4], C2×C6 [×11], C42 [×3], C22⋊C4 [×4], C22⋊C4 [×10], C4⋊C4 [×8], C22×C4 [×2], C22×C4 [×3], C2×D4 [×3], C2×Q8, C24, Dic6, C4×S3, C2×Dic3 [×7], C2×Dic3 [×3], C3⋊D4 [×5], C2×C12 [×4], C2×C12 [×3], C22×S3, C22×C6 [×3], C22×C6 [×5], C2×C22⋊C4, C2×C22⋊C4, C42⋊C2 [×2], C4×D4 [×2], C22≀C2, C22⋊Q8 [×2], C22.D4 [×3], C4.4D4, C422C2 [×2], C4×Dic3 [×3], Dic3⋊C4 [×5], C4⋊Dic3 [×3], D6⋊C4 [×3], C6.D4 [×7], C3×C22⋊C4 [×4], C2×Dic6, S3×C2×C4, C22×Dic3 [×2], C2×C3⋊D4 [×3], C22×C12 [×2], C23×C6, C22.45C24, C23.16D6, Dic3.D4, C23.8D6 [×2], Dic34D4, C23.9D6, C23.11D6, C22.D12, C12.48D4, C23.26D6, C4×C3⋊D4, C23.28D6, C2×C6.D4, C244S3, C6×C22⋊C4, C24.42D6

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D6 [×7], C4○D4 [×4], C24, C22×S3 [×7], C2×C4○D4 [×2], 2+ (1+4), C4○D12 [×2], D42S3 [×2], S3×C23, C22.45C24, C2×C4○D12, C2×D42S3, D46D6, C24.42D6

Generators and relations
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=d, ab=ba, eae-1=ac=ca, ad=da, faf-1=acd, bc=cb, bd=db, be=eb, fbf-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >

Smallest permutation representation
On 48 points
Generators in S48
(2 31)(4 33)(6 35)(8 25)(10 27)(12 29)(13 43)(14 20)(15 45)(16 22)(17 47)(18 24)(19 37)(21 39)(23 41)(38 44)(40 46)(42 48)
(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 25)(9 26)(10 27)(11 28)(12 29)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 45 7 39)(2 38 8 44)(3 43 9 37)(4 48 10 42)(5 41 11 47)(6 46 12 40)(13 32 19 26)(14 25 20 31)(15 30 21 36)(16 35 22 29)(17 28 23 34)(18 33 24 27)

G:=sub<Sym(48)| (2,31)(4,33)(6,35)(8,25)(10,27)(12,29)(13,43)(14,20)(15,45)(16,22)(17,47)(18,24)(19,37)(21,39)(23,41)(38,44)(40,46)(42,48), (13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,45,7,39)(2,38,8,44)(3,43,9,37)(4,48,10,42)(5,41,11,47)(6,46,12,40)(13,32,19,26)(14,25,20,31)(15,30,21,36)(16,35,22,29)(17,28,23,34)(18,33,24,27)>;

G:=Group( (2,31)(4,33)(6,35)(8,25)(10,27)(12,29)(13,43)(14,20)(15,45)(16,22)(17,47)(18,24)(19,37)(21,39)(23,41)(38,44)(40,46)(42,48), (13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,45,7,39)(2,38,8,44)(3,43,9,37)(4,48,10,42)(5,41,11,47)(6,46,12,40)(13,32,19,26)(14,25,20,31)(15,30,21,36)(16,35,22,29)(17,28,23,34)(18,33,24,27) );

G=PermutationGroup([(2,31),(4,33),(6,35),(8,25),(10,27),(12,29),(13,43),(14,20),(15,45),(16,22),(17,47),(18,24),(19,37),(21,39),(23,41),(38,44),(40,46),(42,48)], [(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42)], [(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,25),(9,26),(10,27),(11,28),(12,29),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,45,7,39),(2,38,8,44),(3,43,9,37),(4,48,10,42),(5,41,11,47),(6,46,12,40),(13,32,19,26),(14,25,20,31),(15,30,21,36),(16,35,22,29),(17,28,23,34),(18,33,24,27)])

Matrix representation G ⊆ GL4(𝔽13) generated by

12000
0100
0010
00812
,
1000
01200
0010
0001
,
1000
0100
00120
00012
,
12000
01200
00120
00012
,
11000
0700
00811
0005
,
0600
2000
0080
0008
G:=sub<GL(4,GF(13))| [12,0,0,0,0,1,0,0,0,0,1,8,0,0,0,12],[1,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[11,0,0,0,0,7,0,0,0,0,8,0,0,0,11,5],[0,2,0,0,6,0,0,0,0,0,8,0,0,0,0,8] >;

45 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J4K···4O6A···6G6H6I6J6K12A···12H
order1222222222344444444444···46···6666612···12
size111122224122222244666612···122···244444···4

45 irreducible representations

dim111111111111111222222444
type++++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6C4○D4C4○D122+ (1+4)D42S3D46D6
kernelC24.42D6C23.16D6Dic3.D4C23.8D6Dic34D4C23.9D6C23.11D6C22.D12C12.48D4C23.26D6C4×C3⋊D4C23.28D6C2×C6.D4C244S3C6×C22⋊C4C2×C22⋊C4C22⋊C4C22×C4C24C2×C6C22C6C22C2
# reps111211111111111142188122

In GAP, Magma, Sage, TeX

C_2^4._{42}D_6
% in TeX

G:=Group("C2^4.42D6");
// GroupNames label

G:=SmallGroup(192,1054);
// by ID

G=gap.SmallGroup(192,1054);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,219,1571,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=d,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations

׿
×
𝔽